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Plant biostimulants which include bioactive substances (humic acids, protein
hydrolysates and seaweed extracts) and microorganisms (mycorrhizal fungi and plant
growth promoting rhizobacteria of strains belonging to the genera Azospirillum,
Azotobacter, and Rhizobium spp.) are gaining prominence in agricultural systems
because of their potential for improving nutrient use efficiency, tolerance to abiotic
stressors, and crop quality. Highly accurate non-destructive phenotyping techniques
have attracted the interest of scientists and the biostimulant industry as an efficient
means for elucidating the mode of biostimulant activity. High-throughput phenotyping
technologies successfully employed in plant breeding and precision agriculture,
could prove extremely useful in unraveling biostimulant-mediated modulation of key
quantitative traits and would also facilitate the screening process for development of
effective biostimulant products in controlled environments and field conditions. This
perspective article provides an innovative discussion on how small, medium, and large
high-throughput phenotyping platforms can accelerate efforts for screening numerous
biostimulants and understanding their mode of action thanks to pioneering sensor and
image-based phenotyping techniques. Potentiality and constraints of small-, medium-,
and large-scale screening platforms are also discussed. Finally, the perspective
addresses two screening approaches, “lab to field” and “field to lab,” used, respectively,
by small/medium and large companies for developing novel and effective second
generation biostimulant products.

Keywords: bioassaying, functional characterization, high-throughput screening, imaging methods, integrative
phenotyping, mode of action, morpho-physiological traits, nutrient use efficiency

PLANT BIOSTIMULANTS: WHAT THEY ARE AND THEIR
EFFECTS ON MORPHO-PHYSIOLOGICAL TRAITS OF CROPS

The term “biostimulant” was first introduced by Zhang and Schmidt (1997) in an online article
of the Grounds Maintenance Journal describing them as “materials that, in minute quantities,
promote plant growth.” The biostimulants mentioned were humic acids and seaweed extracts,
and their action on plants was proposed to be essentially hormonal. The term was subsequently
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adopted by many scientists to denote “substances and/or
microorganisms applied to plants with the intention to enhance
nutrition efficiency, abiotic stress tolerance and/or crop quality
traits, regardless of its nutrients content” (du Jardin, 2015). From
a regulatory point of view, there is no agreement worldwide
defining plant biostimulants and many countries lack a legal
framework. Within the EU, there is an ongoing revision of
regulation aiming to establish a common legal framework
for biostimulants, currently fragmented across Member States.
Under the new regulation, plant biostimulants will be CE marked
as fertilizing products stimulating plant nutrition processes
independently of the products’ nutrient content with the sole
aim of improving one or more of the following characteristics
of the plant: nutrient use efficiency, tolerance to abiotic stress,
and crop quality. Plant biostimulants are defined more by the
plant response they elicit than by their makeup, since the category
entails diverse substances and microorganisms such as humic
acids, protein hydrolysates, seaweed extracts, silicon, mycorrhizal
fungi, and nitrogen-fixing bacteria (Colla and Rouphael, 2015).
Plant biostimulants can influence phenotypic traits and improve
yield by enhancing crop stress-tolerance and nutrient uptake
and assimilation. In most species, foliar or root application of
plant biostimulants improves leaf pigmentation, photosynthetic
efficiency, leaf number and area, shoot and root biomass, as
well as fruit number and/or mean weight, especially under
adverse environmental conditions (Ertani et al., 2013, 2014;
Colla et al., 2015; Lucini et al., 2015, 2018; Rouphael et al.,
2017). Precise and accurate assessment of phenotypic variables
is critical for unraveling and quantifying the biostimulant
activity of various products. High-throughput phenotyping
technologies are receiving increasing attention for purposes
of product screening and development as efficient means to
(1) automated, non-destructive online monitoring of multiple
morpho-physiological plant traits; (2) time-series measurements
necessary for following the progression of growth, plant
performance, and stress responses of individual plants at high-
resolution; (3) reduced cost, labor, and time for analyses through
automatization, remote sensing, improved data integration, and
experimental design. High-throughput phenotyping technologies
have been successfully employed in plant breeding (Araus and
Cairns, 2014; Tardieu et al., 2017), however, their application in
assessing plant biostimulant action has been limited (Petrozza
et al., 2014). The current perspective article examines the
potential benefits arising from the use of high-throughput
phenotyping platforms (Figure 1) in biostimulant product
screening and discusses current advances in plant phenotyping
in the context of developing effective biostimulants.

HIGH-THROUGHPUT PHENOTYPING
PLATFORMS TO ASSESS THE
BIOSTIMULANT ACTIVITY

Small-Scale Screening Platforms
Screening platforms based on the semi-automated or automated
bioassaying of plant/tissues traits using simple read-outs might

be useful for identification of new biostimulants as well as for
mode of action studies. Such platforms should allow parallel
testing of large amounts of samples giving opportunity of high-
throughput screening campaigns comparable to the chemical
biology pipelines (Humplík et al., 2015). The advantage can
lie in the possible miniaturization of the assays and use of
simple and fast ways of biological response evaluation (De Diego
et al., 2017). Further, because biostimulants represent various

FIGURE 1 | High-throughput plant phenotyping platforms: (A) small scale
phenotyping platform consisting of XYZ PlantScreenTM growth-chamber with
automatic top view RGB imaging (Photon System Instruments, Czechia) for
screening biostimulant substances based on the changes on Arabidopsis
rosette growth in multi-well plates at Palacký University in Olomouc, Czechia;
(B) medium-scale phenotyping platform PlantScreenTM Modular System
(Photon System Instruments, Czechia) with integrated high-resolution RGB,
chlorophyll fluorescence, thermal and both VNIR and SWIR hyperspectral
imagers for high-precision digital plant phenotyping and plant cultivation of
mid-scale size up to large plants in greenhouse or semi-controlled
environment; (C) Phenomobile for fruit trees and berry bushes developed at
the James Hutton Institute (Scotland, United Kingdom), with VNIR and SWIR
hyperspectral imagers (Williams et al., 2017; photo courtesy of H. G. Jones);
(D) Large scale automated field phenotyping system. PlantScreenTM Field
System is autonomous mobile platform with multi-functional sensor platform
mounted on an XZ-robotic arm with high-resolution visible, chlorophyll
fluorescence, thermal infrared, hyperspectral imagers, and 3D laser sensor
(Photon System Instruments, Czechia).
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types of products including complex mixtures of biologically
active compounds, testing should be done in broad concentration
ranges offering evaluation of concentration-dependent effects.
Importantly, the testing should cover analyses of the performance
of a biostimulant in various stress conditions. This can be
achieved mainly through bioassays in the platforms located
in fully controlled environment allowing setting-up of various
stress conditions such as temperature (heat/cold) and light
(low/high intensity). The multivariate approach further counts
with application of other stresses including low nutrients, salt,
drought, or heavy metals. The higher level then represents
cross-testing of a biostimulant in a broad concentration range
against a concentration range of various stressors, or even their
combinations. Such a highly complex screening approach can be
highly efficient and lead to identification of novel biostimulants
with various modes of action. Hence, the limiting factor of
the screening platforms is the real throughput that depends on
the level of automation, platform capacity, and the number of
variants, which is in turn determined by the number of plants per
variant and the number of technical replicates of each variant (De
Diego et al., 2017). Arabidopsis thaliana, a classical model in plant
biology, offers important advantages for phenotype-based high-
throughput screening approaches. Bioassays using the in vitro
grown Arabidopsis have high potential to be used in small-
scale platforms for screening novel biostimulants applied through
the growth medium. Several recently published protocols are
based on RGB imaging of Arabidopsis shoot (rosette) growth.
Miniaturization of the bioassay to the multi-well plates allows
increasing the throughput to thousands of samples. Arabidopsis
grown in vitro in 24-well plates were used for screening of growth
regulator activity of a library of 10,000 compounds (Rodriguez-
Furlán et al., 2016). Moreover, in this work the transferability
of the results obtained with the model plant Arabidopsis to
other crops of commercial interest, such as tomato, lettuce,
carrots, has been also demonstrated (Rodriguez-Furlán et al.,
2016). Recently, an automated method for high-throughput
screening of Arabidopsis rosette growth in multi-well plates
allowing measurement of 11,000 plants in less than 2 h has
been presented by De Diego et al. (2017). In this method,
several traits such as changes in the rosette leaf area, relative
growth rate, survival rate and homogeneity of the population
are scored using fully automated RGB imaging and subsequent
image analysis. This method was successfully validated on
example of multivariate analysis of rosette growth in different
salt concentrations and the interaction with varying nutritional
composition of the growth medium (De Diego et al., 2017). Many
biostimulant products can directly or indirectly modify the plant
hormone homeostasis of a treated plant. Principle of a facile
forward chemical screening methodology for intact Arabidopsis
seedlings harboring the β-glucuronidase (GUS) reporter under
plant hormone-responsive promoters can be adapted for semi-
automated testing in 96-well plates (Halder and Kombrink,
2015). Several existing transgenic Arabidopsis lines can be
employed in such a lab-scale assay for multiple analyses of the
effect of a biostimulant on the individual signaling pathways
of cytokinins (ARR5::GUS), auxins (DR5::GUS), salicylic acid
(PR1::GUS), abscisic acid (DC3::GUS), or bacterial elicitors

such as flagellin (WRKY29::GUS). Such a complex assay could
represent complementary tool for unraveling the mode of
action of selected biostimulants. The potential pipeline of a
biostimulant testing small-scale screening platform may consist
of a sequence of automated assays determining the Arabidopsis
performance under different growth conditions and the response
to different abiotic stress treatments, followed by other species-
based bioassays confirming applicability in crops. The next
approach can be represented by complex phenotyping of
selected variants combining various methods of automated,
non-destructive, and simultaneous analyses of plant growth,
morphology, and physiology in the medium-large screening
platforms.

Medium-Large Screening Platforms
Medium-large screening platforms are fully automated
robotic systems usually installed in controlled environment
or semi-controlled greenhouse conditions and are designed for
automated cultivation, handling, and non-invasive monitoring
of plants in throughput for a range of few up to several
hundreds of plants. Plants can be dynamically monitored for
many morpho-physiological traits related to growth, yield,
and performance throughout their development or onset,
progression, and recovery from abiotic stress. Biostimulant
functional characterization in plants can be thus monitored
in high-precision and high-resolution in a given phase of
plant development and/or plant response to environmental
conditions, depending on the target substance application or type
of experimental layout. In terms of dimensions, phenotyping
platforms are available for plants ranging from Arabidopsis,
broadly used as a model plant also in biostimulant research
field (Rodriguez-Furlán et al., 2016; De Diego et al., 2017), up
to platforms providing technological solutions for screening
complex morpho-physiological traits in mature crop plants such
as barley, rice, soybean, or vegetable crops. Standard medium-
to-large phenotyping platforms integrating one or multiple
watering and weighing units ensure that a precise irrigation
system with optional controlled nutrient delivery on plant
specific basis can be used. This can be a key element for studies
when biostimulant action is addressed together in combination
with abiotic stress such as salinity or drought stress and/or when
specific nutrient regime is applied, and nutrient use efficiency is
studied throughout plant development. Integration of automated
and programmable spraying unit into the phenotyping pipeline
further extends the capacities of the platform by maximizing
the standardization of the biostimulant application and/or
availability for different modes of applications (e.g., drench vs.
spraying). In general, many developmental processes can be
actively regulated following biostimulant application. Multiple
functions of biostimulant activity on plants can be characterized
by growth-promoting features, enhancement of nutrition
efficiency, and abiotic stress tolerance (du Jardin, 2015). This
broad spectrum of traits can be quantitatively described and
qualitatively differentiated by so-called integrative phenotyping
in multi-sensoric phenotyping platforms including imaging
sensors for visible imaging (RGB imaging) and/or 3D imaging,
imaging spectroscopy (hyperspectral imaging), thermal infrared
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imaging, and chlorophyll fluorescence imaging. The integrative
phenotyping approach based on integration of multiple read-
outs from various imaging and non-imaging sensors available
in these types of platforms (Humplík et al., 2015) allows to
draw more complex images on the possible mode of action of
a biostimulant under specific environmental conditions. Range
of commercial phenotyping platforms is nowadays available
with different specificities and key imaging sensor features.
The reader is advised to view recent reviews with overview
of available imaging sensors and commercial technologies
on the market (Humplík et al., 2015; Rahaman et al., 2015;
Mishra et al., 2016). The platforms can be either built within
large controlled-environment chambers or implemented inside
of greenhouse environments. Implementation of multiple
imaging and non-imaging sensors (e.g., environmental sensors)
within the phenotyping platforms provides the possibility
to design species-specific phenotyping protocols in order to
understand: plant growth dynamics and performance via
RGB imaging; plant’s photosynthetic capacity and ability to
harvest light energy by chlorophyll fluorescence imaging,
stomatal conductance, and water transpiration rates of plants by
measuring leaf and canopy temperature with thermal imaging
sensors; biochemical composition of plants by quantification of
spectral reflectance profiles with hyperspectral imaging, precise
architecture, and shape of the plants by 3D imaging. Above
all, standardized data management routines and sophisticated
image analysis algorithms are implemented within the general
phenotyping pipelines (Tardieu et al., 2017). Altogether by
using advanced data analysis algorithms and statistical analysis
for the multi-dimensional phenotype data that are resulting
from integrative phenotyping approach, the broad spectrum
of morpho-physiological traits can be clustered and the traits
correlating with the given phase of biostimulant application or
the stress response can be identified. The so far above-described
phenotyping approaches can be successfully used for in-depth
characterization of biostimulants action in a range of plants
species, however, the read-out refers solely to above-ground
morpho-physiological features. The below-ground features
referring to root system architecture and its function are not
analyzed as routinely as shoot features but certainly should not be
neglected. Range of automated and semi-automated phenotyping
platforms are currently available for quantitative and dynamic
analysis of root growth and architecture (Paez-Garcia et al.,
2015). However, in most cases, and especially for crop species of
bigger size, range of technical limitations must still be overcome.
Major challenges for root phenotyping remain in providing high
throughput level tools with relevant growing conditions and with
appropriate spatial and time resolution of image acquisition and
this in both time and cost-effective manner.

Field Phenotyping Systems
Many of the effects of biostimulants are related to improvements
of the functioning of root systems and their interaction with
the soil environment and to improved mechanisms of tolerance
to environmental stresses (Calvo et al., 2014). Therefore, it
is clear that controlled environments do not always provide
a realistic context for their assessment. Soil characteristics,

rainfall, temperature, and weather, along with the presence of
diseases, insect pests and weeds, interact with the mechanisms
of action of biostimulants, thereby influencing their efficacy
across years. Additionally, crop physiological processes acting
at the canopy scale, when plants are grown together in the
field, have their own specific mechanisms, such as root mutual
relationships and competitive effects that interact with those
influenced by biostimulants in the single plant, when grown alone
in a pot. In recent years there has been impressive progress
in the development of approaches for open-field phenotyping
(Araus and Cairns, 2014; Shakoor et al., 2017), and the accuracy
of proximal or remote sensing systems for ground-based to
aerial platforms is dramatically increasing. The use of such
systems opens the way to a spectacular increase in the capability
of screening large number of genotypes in the field, with
non-destructive, repeated, objective observations, without the
requirement of an extensive labor force. It is not only for
plant breeding that these systems could be used, but also for
physiological and agronomic studies, including the assessment
of biostimulants. Sensors can be deployed on the ground, on
fixed or mobile platforms, so that the distance to the target
ranges from less than one to a few ten meters. Fixed platforms,
in which the sensors do not move, include towers (Naito et al.,
2017), tripods (Friedli et al., 2016), and wireless sensor networks
(WSN) (Jones et al., 2018). Mobile ground platforms range
from tractor-based systems (Enciso et al., 2017; Salas Fernandez
et al., 2017), to manually driven buggies (Deery et al., 2014),
or autonomous mobile rovers (Madec et al., 2017), to fixed
rails (Virlet et al., 2017), or wires (Kirchgessner et al., 2017).
Alternatively, phenotyping systems can be carried by unmanned
aerial vehicles (UAV) (Sankaran et al., 2015; Yang et al., 2017)
or blimps/balloons, in which case the distance from the target is
generally of the order of 30–150 m, so they could be considered as
remote sensing systems. There are advantages and disadvantages
for each platform type, extensively discussed in previous reviews
(Deery et al., 2014; Shakoor et al., 2017; Yang et al., 2017). In
general, ground-based systems have a higher spatial resolution
(i.e., ground sampling distance) and the possibility of assembling
multiple-sensor arrays, combining, for example, hyperspectral,
thermal, and lidar sensors. Conversely UAVs are limited by a
small payload of just one or two instruments. On the other hand,
ground platforms can be slow to move, so that environmental
conditions may change by the time they move from one plot
to another. This is a disturbing effect for some spectral (Virlet
et al., 2017) and thermal sensing systems (Deery et al., 2014),
which are sensitive to the effect of varying solar irradiance,
for example, in the case of sky conditions with scattered
clouds. Additionally, fixed ground-based systems constrain the
possibility of changing the experimental plot area, sometimes
preventing a sound agronomic practice of crop rotation. They
also pose strong limitations to conventional soil preparation
(i.e., tillage), because the platform only covers a fixed small
land area, where conventional agricultural machinery cannot be
used (Kirchgessner et al., 2017; Virlet et al., 2017). Thus, for
biostimulants assays, mobile systems should be preferred. In
general, the suitability of the platform will vary in relation to
the objectives of the study and on the plant variables that need
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to be estimated, as well as on the accuracy required in their
estimation. In the case of biostimulants, the variables of interest
that can be monitored from current field phenotyping systems,
are those related to canopy structure and growth, photosynthesis,
water relations, and leaf biochemistry. These variables should be
generally estimated with an accuracy better than 10%, in order
to be able to discriminate the effect of biostimulants (Calvo
et al., 2014). Ground-based lidar or terrestrial 3D laser scanning
systems seem to provide the most accurate and versatile tool
for canopy structure and functioning assessment (Deery et al.,
2014; Kjaer and Ottosen, 2015; Friedli et al., 2016), better than
for example, RGB structure from motion techniques (Madec
et al., 2017). Infrared thermography, when due attention is paid
to ancillary measurements and/or reference surfaces, allows the
assessment of transpiration and stomatal functioning (Jones et al.,
2018). Close-range imaging spectroscopy (Mishra et al., 2017)
seems to be the most promising tool for the assessment of tissue
biochemistry, though technical issues exist, related to the data
acquisition configuration, for example, for line scanners and for
conversion into absolute reflectance (Deery et al., 2014), as well as
for heavy data processing (Virlet et al., 2017). For the assessment
of photosynthetic functioning and stress responses, fluorescence
imaging has great potential, despite technical limitations of some
techniques in field conditions (e.g., illumination) (Shakoor et al.,
2017; Virlet et al., 2017). The possibility to assess root structure
and functioning is not available in current systems (Pauli et al.,
2016) although it would be extremely interesting for biostimulant
assessment. In this context, the mapping of soil properties, for
example, by geoelectrical sensors or/and hyperspectral bare soil
data (Casa et al., 2013), rather than root structure per se provides
a potentially powerful ally to direct root detection.

BIOSTIMULANT DEVELOPMENT
PROCESS: FROM LAB TO FIELD OR
FROM FIELD TO LAB?

Biostimulant activity is modulated by interacting factors such
as plant genotype, growing conditions, dose, and application
time. Crops in open field are faced with multiple/combined
abiotic stresses difficult to reproduce in controlled environment.
Moreover, the performance of microbial biostimulants depends
on native soil microflora, physical, and chemical conditions of
the soil and climatic factors. For these reasons, biostimulants
screened in controlled environment do not always perform
as expected under field conditions. An effective approach
would be to screen substances/microorganisms for biostimulant
activity under real field conditions and then use small-medium
phenotyping platforms in controlled-environment experiments
to understand their mode of action on model plants like
Arabidopsis. Although this approach seems most appropriate

for identifying effective biostimulant products, many companies
initiate the screening process in controlled environment to
shorten the time needed to identify new bioactive substances and
beneficial microorganisms and to narrow the number of products
later tested in real field conditions. This “lab to field” approach
is mostly used by SMEs to reduce the cost of field testing for
product development. On the contrary, a “field to lab” approach is
especially adopted by big companies using large-scale field testing
to develop efficient biostimulants under real growing conditions.
For instance, Albaugh, LLC, and Italpollina United States, Inc.
recently announced a long-term strategic collaboration to deliver
biological seed treatment solutions for boosting crop yields
in a sustainable way. In 2015–2017, the Alliance tested more
than 50 seed treatments (vegetal-based protein hydrolysates,
Rhizoglomus irregulare BEG72, Funelliformis mossae BEG234,
and Trichoderma atroviride MUCL 45632) across 330 field trials
in more than 100 locations in United States (Bonini et al., 2017).
The best performing products were also tested in trials under
controlled environment to investigate their mode of action using
a ‘multi-omics’ approach. This collaboration has resulted in the
launch of several biological seed treatments (BIOST R©VPH100;
BIOST R©Mycorrhizae 100; BIOST R©Trichoderma 100) for growers
of field crops such as canola, corn, cotton, rice, sorghum,
soybeans, sugarbeets, and wheat1.
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