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Temporal fluctuations in the potential energy of proteins:
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Abstract

Molecular dynamics (MD) simulation methods were used to investigate temporal fluctuations in the potential energy of
plastocyanin (PC), an electron transport copper-containing protein. The related power spectra, studied within a range of
sampling times, revealed the presence of 1/f α noise with 1< α < 2 and Gaussian statistics, that is consistent with fractional
Brownian motion (fBm) models describing sublinear diffusion. Analysis of the protein trajectory in the configurational space
by the essential dynamics method, allowed us to confirm, in an independent way, the occurrence of such a sublinear diffusive
process. The results are discussed also in connection with the self-similar properties, involving spatial and temporal disorder,
of the investigated systems. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, we put into evidence the occurrence
of 1/f α noise in the potential energy(Ep) fluc-
tuations of plastocyanin (PC), an electron transfer
copper-containing protein involved into the photosyn-
thetic process, investigated by a molecular dynamics
(MD) simulation approach [1,2]. Such a phenomenon
could be traced back to the peculiar features of the
protein dynamics, which involves also collective,
non-linear motions and is connected to the sampling
of the local minima (conformational substates) in
the potential energy hypersurface [3–5]. Indeed, MD
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simulations evidenced in the past the presence of a
large number of nearly isoenergetic minima in the
energy landscape of a protein molecule [6]. These
conformational substates appear organised in a hier-
archical way and transitions among them, driven by
collective, anharmonic motions of the polypeptide
chain, seems to be coupled to the biological function-
ality [4].

In general, the presence of 1/f α noise, observed in
a wide variety of different phenomena, can be hypoth-
esised to be a sort of signature for complexity in the
temporal domain [7–9]. A collection of many different
random processes, each one having a single character-
istic time with a power law distribution, may give rise
to a 1/f α trend for the power spectrum [8,9]. Indeed,
macromolecular functional collective motions involve
the overcoming of different energy barriers which are
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distributed and lead to non-exponential relaxation be-
haviour [3,10].

Recently, 1/f noise has been explained by consider-
ing a random walk on a random, self-similar potential
surface [11]. Statistical scale-invariant or self-similar
random processes (1/f α processes) have been thor-
oughly studied by Mandelbrot and Van Ness [12] in
the framework of fractional Brownian motion (fBm).
It can be shown [13] that the exponentα is connected
to the self-similarity parameterH (or Hölder param-
eter) by the following equation:

α = 2H + 1. (1)

This is a general relationship, independent, under
rather mild mathematical conditions [13], of the
Gaussianity or non-Gaussianity of process statistics.
Moreover, the mean square displacement (MSD)
〈
x2〉 of the position processx(t) is found to be
proportional tot2H , whereH takes the value of 1/2
for simple Brownian motion; values ofH > 1/2 (<
1/2) corresponding to superdiffusion (subdiffusion)
[14,15].

On the other hand, Garcia and coworkers recently
studied the trajectory of a protein in the configurational
space within the framework of a particle diffusing in
real space and getting trapped for a limited period of
time in the energy minima. Both a small hydropho-
bic protein, crambin [16], and cytochromec [17] were
investigated and their collective motions, analysed by
the essential dynamics (ED) method [5,18,19], show
anomalous diffusion, in the sense that the mean square
displacement is not proportional to time, as in tra-
ditional Brownian motion, but is substantially sup-
pressed with〈
x2〉 ∼ t2H , H < 1/2.

In the light of these observations and to better un-
derstand the physical significance of the 1/f α noise
observed by some of us in the power spectrum of PC
potential energy [1,2], we have carefully investigated
the dependence ofα in this system on the sampling
time and we found that the values obtained are con-
sistent with an fBm (1< α < 2) [13]. We therefore
studied the dynamics in the configurational space of
the protein by essential dynamics method. We found
that the motions appear subdiffusive for times longer
than 1 ps. The correspondingH values, independently

extracted from the trajectory projected along the
essential directions, appear to match relationship (1)
reasonably well. These findings point out a possible
physical link between a 1/f α behaviour of the poten-
tial energy and a sublinear diffusion process in the
configurational space of the protein.

2. Methods

2.1. MD simulation methods

The simulated MD trajectories of hydrated PC
(1PCL entry of the Brookhaven Protein Data Bank
[20]) were computed by the GROMOS87 software
package [21] with the force field modified accord-
ing to Mark et al. [22]; hydration water having been
modelled by the SPC/E potential [23]. Since the
GROMOS force field does not include parameters for
amino acids liganded to metal ions, a modified force
field has been employed. In particular, a covalent
bond between the copper and each ligand has been
introduced to preserve the X-ray structure [24].

The protein (99 amino acid residues) was centred
in a truncated octahedral obtained from a cube of
edge of 6.20257 nm filled with 3514 water molecules
and periodic boundary conditions were applied [21].
The energy of the resulting protein water system was
minimised by using the steepest descent method. A
cutoff radiu of 0.8 nm for non-bonded interactions
and of 1.4 nm for the long-range charged interactions
was employed.

Simulations were carried out in the canonical en-
semble. The temperature (300 K) of the protein and
of the solvent was separately coupled to an external
temperature bath, with a relaxation time of 0.1 ps. The
pressure was kept constant by a coupling to the bath
at 1 bar with a relaxation time of 0.5 ps.

The dynamics was followed for 1100 ps. The sim-
ulation was performed by first assigning to each
atom Maxwellian velocities; a decreasing positional
restraining force, derived from a harmonic potential,
with a force constant ranging from 9000 to 250 kJ/mol/
nm2, was introduced during the first 100 ps. Configu-
rations of all trajectories and energy were saved every
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6 fs. Additionally, another MD simulation was run
and only the energy saved every 2 fs.

The kinetic and the potential energy, as well as the
root-mean square deviation of the PC backbone and
of the gyration radius, were monitored during the sim-
ulation time to assess the stability of the simulations
and to check that the protein structures have properly
equilibrated. On the basis of these results (data not
shown), it comes out that, within the first 100 ps, the
system has reached the thermal equilibrium. The last
1000 ps of the trajectory (i.e., from 100 to 1100 ps)
were used for the ensuing analyses.

2.2. Potential energy fluctuations:1/f α analysis
and fractal analysis

The power spectrumS(f ) of the simulated poten-
tial energy(Ep) fluctuations, defined as the Fourier
transform of the potential energy autocorrelation
function,

S(f ) =
∫ tmax

0
〈Ep(0)Ep(t)〉 e2π ift dt (2)

was estimated by the maximum entropy method [25],
in the implementation provided by thememspecrou-
tine included in the TISEAN package [26], by using
16 poles. The value of theα exponent was then ex-
tracted by a linear fit on the log–log plot, over a suited
frequency interval where the plot is linear [27].

The spectra discussed were typically estimated over
100 ps wide time windows, having verified that our
results do not depend on the window size nor on its
position along the simulation time span.

For the sake of comparison with results presented in
[28], the fractal dimension of curve graphs was deter-
mined according to the same computational procedure
used therein, that is an implementation in the MATH-
EMATICA programming language of the method in-
troduced by Dubuc et al. [29].

2.3. ED method

This method was used to separate in an MD trajec-
tory large concerted structural rearrangements, which
belongs to the so-called essential subspace, from the
small, Gaussian fluctuations [5,18,19]. It is based on

the diagonalisation of the covariance matrixCij built
from the atomic fluctuations in an MD trajectory, from
which overall translational and rotational motions have
been removed:

Cij = 〈(xi − 〈xi〉)(xj − 〈xj 〉)〉. (3)

Each eigenvalue represents the total mean square
fluctuation of the system along the corresponding
eigenvector and the method is equivalent to a multi-
dimensional linear least squares fit of the trajectory,
where the first eigenvector, i.e., that corresponding to
the largest eigenvalue, represents the direction that
fits best to the ensemble of configurations, the second
to the second best, etc.

Here, the protein covariance matrix was constructed
from the α-carbons(Cα) trajectories, including the
copper atoms (300 degrees of freedom in total). Indeed
it has been shown that theCα atoms contain all the
information for a reasonable description of the protein
large concerted motions [18].

The analysis of the MD trajectory in configurational
space was carried out using the WHAT–IF modelling
package [30] and the essential dynamics routines sup-
plied therein.

For each essential directionk, the MSD〈
r2
k (t)〉,

0 ps < t < 500 ps, was computed by projecting the
MD trajectory on the correspondingkth eigenvector
and then averaging the squared displacements along it
[rk(t0 + t)− rk(t0)]2 over all the time originst0 in the
interval between 100 and 600 ps.

3. Results and discussion

3.1. Potential energy fluctuations

The temporal evolution of the total potential energy,
Ep (including bond stretching and angle bending, di-
hedral angle bending and torsion, Lennard–Jones and
Coulomb interactions) of the PC macromolecule is
shown in Fig. 1 for the time interval 100–200 ps (the
same behaviour could be observed in every 100 ps
wide segment extracted from the total simulation
length). The curve is characterised by fast fluctua-
tions over a wide range of time scales; the distribu-
tion of the potential energy around its average value
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Fig. 1. Temporal evolution of the total potential energy for the time interval 100–200 ps. Inset: probability distribution of the total potential
energy around its average value and the best fit by a Gaussian function. (data skewness= 0.0102, kurtosis= −0.0445, consistent with a
Gaussian distribution).

has a standard deviation of 185.5 kJ/mol and can be
very satisfactorily described by a Gaussian (inset in
Fig. 1): according to the central limit theorem, this is
consistent with a noise arising from a superposition
of many independent sources.

Fig. 2. Power spectra of total potential energy fluctuations, for the time interval 100–200 ps and five different values of the sampling time:
2, 6, 12, 24 and 48 fs. The plots are vertically shifted for clarity. The dashed lines show a 1/f α function with the indicatedα exponent,
determined by best fit over the linear spectral interval. Inset: trend ofα values as function of sampling time.

In Fig. 2, we show the log–log plots of the power
spectrum of the total potential energy for five different
sampling times, from 48 to 2 fs.

In general, for lower frequencies, below 1011–1012

Hz, the spectra are of a white-noise type: this means
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that one must continue simulations at least 1–10 ps
to obtain a stationary state. This behaviour was al-
ready observed, among others, by Takano et al. [31]
in polypeptides. Then, after a linear tract, where an
1/f α trend over two decades can be clearly recog-
nised, the highest frequencies show an oscillating
behaviour, with a possible drop for the smallest sam-
pling times (i.e., 6 and 2 fs), starting from about
5 × 1013 Hz. The amplitude of the oscillations them-
selves decreases sharply when the sampling time
decreases. This behaviour is consistent with a small
ratio between data numerosity and number of poles:
indeed, when more data points are considered (i.e.,
6 and 2 fs plots) the amplitude of the oscillations
becomes much smaller. When using maximum en-
tropy methods, a careful choice of the number of
poles is needed [25] and in this respect we have
chosen a value (16) better tuned for the finest
steps.

Interestingly, the 1/f α trend is characterised by a
slope which depends on the sampling time. Quanti-
tatively, when the latter is decreased from 48 to 6 fs,
the α exponent estimated in the linear spectral range
(e.g., 1012 Hz < f < 3 × 1013 Hz for the 6 fs plot)
varies from 1.03 to 1.50. On the other hand, the plot
corresponding to a 2 fs sampling time clearly shows
that further reducing the sampling time below 6 fs
does not add any additional information, the estimated
value ofα being experimentally indistinguishable (in-
set in Fig. 2). This behaviour could be explained con-
sidering aliasing effects [32] which are particularly
relevant when sampling wide band signals: using a
sampling time moderately (i.e., about 101–103 times)
larger than the threshold value dictated by the Nyquist
criterion leads to artificially enhanced power spectra
tails and therefore to lower estimated slopes. Indeed,
according to that criterion, ifB is the bandwidth, the
sampling time must be kept smaller than 1/2B. Need-
less to say, when dealing with real signals it is often
difficult to measure a bandwidth value, which would
be very useful to optimise the sampling time. Con-
sidering again Fig. 2, however, it is quite clear that
the potential energy spectra estimated from the trajec-
tory sampled every 6 fs and every 2 fs sharply drop
at frequencies higher than about 5× 1013 Hz: this

value may be considered for all purposes the effective
bandwidthB. Indeed, for aB equal to 5× 1013 Hz
the Nyquist criterion dictates a sampling time smaller
than 10 fs.

At this stage of the research, the drop itself is not
easy to explain, but, interestingly, an even sharper one,
located at the very same frequencies, was noticed by
Ohmine [33] in simulated potential energy fluctuations
of bulk water, modelled by TIPS2 [34], who attributed
it to the missing modelling of water intramolecular
vibrations; the same explanation could be invoked for
our case, since SPC/E too is an internally rigid water
model. Also on the basis of results discussed in [35,36]
interesting relationships could be speculated between
hydrated protein behaviour and free water behaviour
at those energies: a further investigation of this aspect
is required.

The foregoing considerations on the most suited
sampling time suggest that a particular care should be
exercised when comparing actual values of theα expo-
nent scattered in the literature, since different choices
for the sampling time may lead to appreciably dif-
ferent results. For instance, the potential energy fluc-
tuations discussed in Refs. [1,2], if analysed today
using a finer sampling time would most probably show
higher values, closer to 1.5 than to 1.0, in the whole
range of temperatures therein investigated.

A value of α = 1.50, joined with the additional
evidence provided by the Gaussianity of the prob-
ability distribution, is a strong indication that po-
tential energy fluctuations are well modelled as an
fBm [12]. As already mentioned in Section 1, the
spectral coefficientα may be also put geometri-
cally into relationship to the corresponding Hölder
coefficient H , via the formula (1). Actually, if we
introduce the estimated value ofα in Eq. (1) a value
of 0.25 is obtained forH , consistent with a sub-
linear diffusive exploration of the potential energy
landscape.

At this stage, and independently from the 1/f α anal-
ysis of potential energy fluctuations, it would be inter-
esting to calculate the Hölder parameter from the MD
trajectories projected in the essential space, and then
to compare it with theH value above calculated from
theα value via Eq. (1).
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Fig. 3. Mean square displacement vs. time lag along each of the first eight eigenvectors(1 ≤ k ≤ 8) and the 50th one (5th–8th and 50th
vertically shifted for clarity).

3.2. ED analysis

In Ref. [37], we showed that PC is characterised
by a low-dimensional essential space, which is apt to
explain most of the dynamical behaviour underlying
its electron transfer functions. Quantitatively, from
four to eight dimensions can be selected, depending
on the specific criterion adopted [37,38]. In fact, the
latter are somewhat sensitive to the threshold value set
for the so-called correlation coefficient, which quanti-
fies the anharmonicity and deviation from Gaussianity
of the motion.

In this connection, Fig. 3 shows log–log plots of
the mean square displacements〈
r2

k (t)〉 vs. time lagt
along each of the first eight ED eigenvectors, together
with the 50th one, as representative of the dynamics
along the higher order ED directions.

At very short times (< 1 ps) the behaviour along
the different eigenvectors is indistinguishable and
a ballistic region(〈
r2〉 ∼ t2) may be evidenced.
This kind of dynamical evolution is indeed rea-
sonable and is shown, e.g., by diffusing water
molecules belonging to the hydration layers of proteins
[35,36].

For intermediate times the MSD along the first
eigenvectors shows a power law trend,〈
r2〉 ∼ t2H ,
with exponent 2H smaller than one. In Table 1, we
report in detail the best fit values of the exponent
evaluated over the linear tract of the log–log plots.
The diffusive motion of the system covers less vol-
ume in the configurational space than a Brownian
motion, indicating a suppression of diffusion: the
macromolecule may undergo some sort of entangle-
ment within the local minima of the rugged potential
energy hypersurface. Garcia et al. [16] observed in

Table 1
Slope 2H extracted by a best linear fit of the log–log mean square
displacement on the time span 5–100 ps for eigenvectors 1–4,
5–50 ps for eigenvectors 5–8

Eigenvector 2H

1 0.85
2 0.93
3 0.89
4 0.70
5 0.58
6 0.56
7 0.85
8 0.77
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crambin and in cytochromec [17] a similar behaviour
as far as eigenvectors 1–3 and 1–2, respectively, were
concerned, with a value of the Hölder exponent of
0.50. In our case, dealing with the whole set of eigen-
vectors distinctively belonging to the essential space,
a moderate spread is present, around an average of
about 0.76 forH .

Along the higher order harmonic directions, not be-
longing to the essential space, a plateau is rapidly
reached—as shown in Fig. 3 by the plot correspond-
ing to eigenvector 50—but this happens also for the
first directions, with much longer characteristic times,
however. The diffusive regime lasts about 400 ps for
eigenvector 1, about 200 ps for eigenvectors 2–4, and
about 80 ps for eigenvectors 5–8. Other proteins are
known to be characterised by an especially long last-
ing diffusive dynamics along the first direction, which
may even go ballistic sometimes [18,19,39]; in our
case, however, we do not see unequivocal signs of this
regime. In order to better investigate this issue, we
have extended our analysis for the MSD up to 750 ps,
by averaging over only 250 ps worth of different time
origins t0, at the cost of an increased noise (data not
shown), with results further excluding the presence
of a new ballistic regime. Returning to the plateau, it
may be partially explained considering the finite size
of the system that restricts〈
r2(t)〉 to be finite [16],
but further investigations are required in order to bet-
ter understand our finding that different eigenvectors
show different onset times.

In conclusion, theH values presented in Table 1
clearly show that, after an initial ballistic-type regime,
the configurational space is explored subdiffusively
along the essential directions for a long stretch of time,
in complete analogy with the simultaneous exploration
of the potential energy landscape. Even a good quan-
titative agreement could be found for the nature of
those diffusion processes, withH = 0.25 for potential
energy fluctuations and slightly larger values for dif-
fusion along the essential degrees of freedom, which
fall in the range between 0.25 and 0.45. Actually, the
approach followed in the present study is supported
and motivated by having shown sublinear diffusion of
protein hydration water [35,36] and, as discussed in
Refs. [1,2], the occurrence of 1/f α noise both in the

macromolecule and the surrounding solvent, with the
same value for the exponent, such a result suggesting
a strong interplay in the temporal features of the pro-
tein and the hydration water.

3.3. Fractal analysis of potential energy
fluctuations

It has been suggested [35,36,40] that the spatial
disorder connected to the roughness of the protein sur-
face could be in some way responsible for the anoma-
lous diffusion of PC hydration water and a specific
form of the propagator, holding for particles diffusing
on a fractal surface, was adopted in the theoretical
analyses.

Recently, fractality has been put into relationship
to diffusion in the potential energy landscape by
Lidar et al. [28], who studied the fractal dimensionγ

[13] of theEp(t) curve graph and argued for a sort of
universality of that parameter, depending only weakly
on the type of molecular system. This, a priori unre-
lated, geometric approach in the study of the temporal
fluctuations, interestingly turns out to be related to
ours since, on the basis of general properties of fBm
models, a power law 1/f α spectrum for largef im-
plies a specific form of the short time autocorrelation
function, that is, one proportional totα−1. This func-
tional form can be compared with that coming from
a geometric study of the fractal structure, which may
be proved to bet4−2γ [13]. Therefore, the following
equation holds between the spectral exponentα and
the fractal dimensionγ of the graph of a typical
realisation:

γ = 1
2(5 − α). (4)

In this connection, it would be interesting to compare
the γ value extracted from Eq. (4) by inserting in it
the α value calculated for our system, with that in-
dependently computed with theε-variation technique
used by Lidar et al. [28]. Actually, these values turned
out to be very close, 1.75 and 1.80, respectively. This
good agreement is even more significant considering
that, when dealing with limited size data sets, the latter
estimate is indeed expected [29] to be slightly larger
than the former.
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It may be also remarked that the fractal dimension
is a parameter very weakly sensitive to the sampling
time used: increasing it from 6 to 48 fs leads to an ex-
perimentally indistinguishableγ = 1.78. This can be
intuitively justified as follows. Using a large sampling
time has the effect of excluding from the analysis the
smallest scales: this implies that the estimated frac-
tal dimension may not be appreciably affected pro-
vided the same kind of fractal structure is found in
the scales still present. More technically, this happens
when theε-variation plot is straight over a sufficiently
wide range of values ofε: the estimated slope (i.e.,γ )
does not change much if the data points corresponding
to the smallest values ofε (i.e., the smallest scales)
are discarded.

4. Conclusions

In this work, we have studied the temporal fluctua-
tions in the potential energy of PC using the methods
of MD simulation. Those are characterised by Gaus-
sian statistics and, when analysed with a sufficiently
small sampling time, reveal a power spectrum of the
1/f α type, with 1< α < 2, thus providing an example
of a physical process well modelled as a subdiffusive
fBm. The occurrence of such a subdiffusive process is
confirmed when the exploration of the configurational
space is independently analysed by ED methods. Ac-
tually, an Hölder exponent smaller than 1/2 is obtained
and it is shown that thisH agrees reasonably well with
theα value extracted from the power spectrum of the
potential energy. It has been also demonstrated that the
α exponent is linked to the fractal dimensionγ which
can be extracted from the potential energy graph. We
may therefore suggest that the presence of 1/f α noise
and of a subdiffusive process could be intimately con-
nected and moreover related to the self-similar prop-
erties of the biological systems under study.
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