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Abstract
Atomic force spectroscopy is able to extract kinetic and thermodynamic parameters of
biomolecular complexes provided that the registered unbinding force curves could be reliably
attributed to the rupture of the specific complex interactions. To this aim, a commonly used
strategy is based on the analysis of the stretching features of polymeric linkers which are suitably
introduced in the biomolecule-substrate immobilization procedure. Alternatively, we present a
method to select force curves corresponding to specific biorecognition events, which relies on a
careful analysis of the force fluctuations of the biomolecule-functionalized cantilever tip during
its approach to the partner molecules immobilized on a substrate. In the low frequency region, a
characteristic 1/f α noise with α equal to one (flickering noise) is found to replace white noise in
the cantilever fluctuation power spectrum when, and only when, a specific biorecognition
process between the partners occurs. The method, which has been validated on a well-
characterized antigen–antibody complex, represents a fast, yet reliable alternative to the use of
linkers which may involve additional surface chemistry and reproducibility concerns.

Keywords: atomic force spectroscopy, 1/f noise, biomolecular recognition

(Some figures may appear in colour only in the online journal)

Introduction

The formation of a complex between biomolecular partners is
foregone by a searching process in the hypersurface energy
landscape, during which encounter complexes may be tem-
porarily formed before reaching a final binding state [1]; such
a process being controlled by forces acting at the nanoscale
[2]. The recently acquired capability to follow the interaction
between single biomolecules has allowed details on the
underlying molecular mechanisms to be gathered and even
subtle phenomena usually hidden in ensemble measurements
to be disclosed [2–7]. Among the nowadays vast repertoire of
single molecule techniques, atomic force spectroscopy (AFS)
has gained a prominent position since it can provide infor-
mation on biomolecular complexes with picoNewton force
sensitivity, without labeling, at physiological conditions and

even at work; becoming also a remarkable tool for biosensing
in biology and medicine [8–10].

AFS experiments are usually carried out by an atomic
force microscope (AFM) in which the tip, situated at the end
of a cantilever, is functionalized with a biomolecule, or even
with a cell (with receptors on its surface), and approaching to
a substrate covered with the biomolecular partner; the for-
mation of a complex being eventually promoted through a
biorecognition process. When the tip is retracted from the
substrate, the unbinding of the complex is induced, as
visualized in the force-piezo displacement curve by a jump-
off to the baseline, and the corresponding unbinding force can
be measured through the Hooke law [11]. The AFS force-
displacement curves (which consist in an approaching and a
retraction stage, figure 2) may encode a wealth of information
on single biological complexes (interaction strength, dis-
sociation rate, affinity, energy landscape features, etc).
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However, to reliably extract this information, only the AFS
curves unambiguously attributed to the unbinding of a spe-
cific complex, which are formed during the approaching
stage, are to be analyzed in the framework of suitable theo-
retical models [12–17]. Indeed, the stochastic heterogeneity of
the system may lead to nonspecific molecular interactions
(due to contact forces, adhesions, multiple events, and so on)
between the tip and the substrate. The resulting variability in
the force curve shape makes then the attribution of the curves
to real specific unbinding events somewhat ambiguous or
substantially operator-biased [11, 18]. In an attempt to mini-
mize such an inconvenience, a currently employed empirical
strategy introduces in the biological partner immobilization
scheme some flexible polymeric linkers, such as poly-
ethyleneglycol (PEG) [19–21]. During the tip retraction and
before the rupture of the specific complex, these linkers
undergo a molecular stretching as evidenced by a peculiar
nonlinear trend of the force-curve just before the jump-off to
the baseline occurs. If this nonlinear trend well matches with
that predicted by the elongation theoretical models for the
used linker, then the occurrence of a specific complex during
the partner approaching is assumed [21, 22]. Such a proce-
dure requires, however, quite involved surface chemistry with
some reproducibility issues, which might affect the interac-
tion process (geometry and forces), and could hamper a
comparison of the affinities of distinct biomolecules for the
same receptor [18, 23]. Accordingly, the possibility to use an
approach which does not necessarily require the use of a
specific linker could be an advantage for some AFS
experiments.

Here, we propose a fast, yet reliable method to select
force curves based on the evidence that the low frequency
power spectrum of the noise displayed by the AFM cantilever
close to the contact point during the approaching stage,
switches from white to flickering (1/f ) noise when, and only
when, a successful partner recruitment occurs [24].

Our approach, which relies on a careful, reproducible
Fourier transform (FT) analysis of the cantilever fluctuations,
has been applied to the well characterized complex formed by
β2μglobulin and anti-β2μglobulin, involved in the human
immune system [25]. The high correlation found between the
appearance of 1/f noise in the approaching stage and the
detection of the peculiar PEG stretching in the retraction
stage, validates the reliability of the method. Additionally, we
have verified that such a method provides reliable results even
without linkers by supporting the capability to single out force
curves related to biorecognition events by avoiding lengthy
chemical procedures involving the use of molecular linkers
and their stretching analysis.

Methods

Sample preparation

The glass slides were cleaned for 5 min in acetone, dried with
nitrogen and then UV irradiated for 30 min They were then
immersed in a solution of 2% (v/v) APTES (Acros Organics)

in chloroform, incubated for 3 min at room temperature,
rinsed in chloroform, and dried with nitrogen. The slides were
subsequently incubated with a solution of 1% glutaraldehyde
(Sigma- Aldrich) in Milli-Q water for 3 min at room tem-
perature, rinsed with Milli-Q water and dried with nitrogen.
Fifty μL of a 1 mgml−1 solution of anti-β2μglobulin in 50 mM
PBS pH 7.5 were poured onto this amine-reactive surface and
incubated overnight at 4 °C. The slides were incubated with
1M ethanolamine to cap non-reacted N-hydroxysuccinimide
(NHS) groups for 30 min Finally, they were gently washed
with PBS, and stored in buffer at 4 °C. A schematic repre-
sentation of the slide functionalization is shown in figure 1(a).

Silicon nitride cantilevers (Veeco Instruments) were
cleaned in acetone for 10 min, dried with a stream of nitrogen,
and UV irradiated for 30 min to expose hydroxyl groups. Tips
were then immersed in a solution of 2% (v/v) 3-aminopropyl-
triethoxysilane (APTES) in chloroform, incubated for 2 h at
room temperature, rinsed in chloroform, and dried with
nitrogen. Silanized tips were immersed in 1 mM N-hydro-
xysuccinimide-polyethylene glycolmaleimide (NHS-PEG-
MAL, MW 1395 Da, 9.5 nm length; Thermo Scientific) and
dissolved in dimethylsulfoxide (DMSO) for 3 h at room
temperature. The NHS-ester group at one end of the PEG
linker reacts with amino-silane molecule to form an amide
bond: the maleimide group at the other end, reacts with the
sulfhydryl group of cysteine residue linked to the NH2-ter-
minus of proteins. The tips were washed in DMSO to remove
the unbound linkers, rinsed with Milli-Q water, dried with
nitrogen, and incubated with 50 μL of a 10 μM solution of β2-
μglobulin in 50 mM PBS pH 7.5 overnight at 4 °C. The tips
were then incubated with 1M ethanolamine to cap non-
reacted NHS groups for 3 min Finally, they were gently
rinsed and stored in buffer at 4 °C. A schematic representation
of the tip functionalization is shown in figure 1(b). The
functionalization of the AFM tip with β2-μglobulin without
the PEG linker was done by following the same procedure
used for glass slides.

Figure 1. Surface chemical strategies for binding: (a) anti-
β2μglobulin on a glass substrate; (b) β2μglobulin to the AFM silicon
nitrite tip with the introduction of a 10 nm long PEG linker. The
same procedure shown in (a) has also been used for binding
β2μglobulin to the tip without the use of PEG.
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AFS measurements

Force measurements were performed with a Nanoscope IIIa/
Multimode AFM (Veeco Instruments) in buffer by using a
liquid cell. The effective cantilever spring constants, keff, whose
nominal value was knom = 0.02Nm−1, were determined by the
thermal noise method, and found in the 0.017–0.045 Nm−1

range. The force curves were acquired as a function of the
piezo-displacement by applying the following conditions: (i) an
approaching speed, v, of about 50 nm s−1; (ii) a relative trigger
of 23–35 nm to limit at 0.7 nN the maximum contact force
exerted by the tip on the protein monolayer; (iii) a ramp size of
150 nm; and (iv) an encounter time (interval between the
approaching and retraction stages) of 100 ms. The spatial
resolution, Δx, of the approaching stage was 1.46× 10−2 nm
corresponding to a temporal resolution Δt=2.80× 10−4 s, as
derived from the relationship Δx= vΔt, where v is the above
mentioned approaching speed. The retraction stages of the
force curves were acquired at the approximate speed values of:
50, 150, 400, 1000 and 3000 nm s−1). Accordingly, the nom-
inal loading rate, given by Rnom = dF/dt= knom v, resulted to be:
1, 3, 8, 20 and 60 nN s−1. The corresponding effective loading
rates, Reff = ksyst v were determined by taking into account that
the spring constant of the entire system, ksyst, could be different
from that of bare cantilever because of the presence of mole-
cules attached to the AFM tip. ksyst values were calculated from
the slope of the retraction stage immediately before the jump-
off [26]. At each loading rate, a thousand force curves were
recorded and analyzed.

Power spectrum analysis

The spectral content of the cantilever fluctuations detected by
the position sensitive photodetector and arising from the
fluctuating forces acting on the cantilever, was analyzed by
determining the power spectrum for each force curve of the
AFS experiment. The power spectrum of the fluctuating for-
ces, F(t), was derived by the FT of the correlation function,
according to:

∫= πS f F F t
f

t( ) (0) ( ) e
1

d , (1)
T

ft

0

2 i

where the brackets < > indicate the correlation function, f is
the frequency, T the integration time interval and F(t) is the
force expressed as a function of time (indeed the force is
registered as a function of the piezo-displacement z, which
depends on time through the relationship z= vt, where v is the
retraction, or pulling, speed). In practice, the power spectrum
was calculated by the maximum entropy method through the
expression [27, 28]:
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where M is the number of poles, set to 256.
Noise analysis was carried out on piezo-displacement

curve regions extending for about 10 nm (corresponding to a
time interval of about 0.2 s) and located at a different part of

the force curves. Accordingly, the resulting power spectra
ranged from a minimum frequency of 10 Hz to a maximum of
3.5 × 103 Hz with steps of 14 Hz.

Analysis of the nonlinear trend by an elongation polymer model

The nonlinear region of the retraction stage before the jump-
off (figure 2) was analyzed in the framework of the polymer
models in order to find out the elongation features of the PEG
under stretching. In particular, we used the free joined chain
model which quantitatively describes the behavior of a
polymer under stretching, through the following expression
[20, 29]:
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where γ is the molecular extension, F is the applied force, lp is
the persistence length (for PEG lp = 0.14 nm) and L is the
contour length of the polymer, i.e. the distance between ends
of the linear polymer chain under the application of the force
F. The experimental nonlinear trend of F as a function of the
piezo-displacement, λ, was turned in terms of the molecular

Figure 2. Representative approaching (black) and retraction (red)
force-piezo displacement curves from AFS experiments carried out
with a glass substrate covered with anti-β2μglobulin approaching: (a)
bare tip; (b) tip functionalized with β2μglobulin without PEG; and
(c) tip functionalized with β2μglobulin with PEG. Left inset: zoomed
region (10 nm long) from the approaching stage just before the
contact point. Right inset: zoomed region (10 nm long) at the
beginning of the approaching stage.
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extension as a function of F; with the molecular extension
being derived from the relationship γ = λ−Δz, where Δz=F/k
is the deflection of the cantilever in correspondence to the λ
value. Successively, it was fitted by equation (3) to extract the
corresponding contour length of the PEG linker. For the
10 nm long PEG linker, used in this experiment, a contour
length of (15 ± 5) nm is expected [30, 31]. Finally, a force
curve was attributed to a specific biorecognition event if: (i)
the experimental nonlinear region of the retraction stage was
well-fitted by equation (3) and (ii) the contour length
extracted from the fit was found in the (15 ± 5) nm interval.

Results and discussion

As already mentioned, an analysis in the framework of sui-
table theoretical models of the AFS force curves from a

biomolecular complex, recorded at different loading rates in
nonequilibrium conditions, allows one to extract the kinetic
and thermodynamical parameters regulating the biomolecular
interactions at equilibrium [8]. However, the force curves
usually exhibit a large variability in their shapes, as shown
and discussed for example in [11, 32]. While the approaching
stage is practically the same in almost all the cases, the
retraction one may display various trends, depending on the
different interactions to which the tip and the substrate
undergo during their approaching [33, 34]. Just to mention a
few examples, force curves in which the retraction stage
shows a linear descending trend immediately after the contact
point reflect nonspecific interactions (usually attributed to
adhesion), between the tip functionalized with a biomolecule
and the substrate on which the partner is immobilized.
Additionally, force curves in which the retraction stage
coincides with the approaching one is indicative of no specific
interactions. We have observed the latter trend in the force
curves with bare tip (see the curves in figure 2(a)).

Furthermore, the presence of a nonlinear trend in the
retraction stage beyond the contact point, indicates the
occurrence of a molecular stretching before the detaching of
the tip from the substrate, resulting in the jump-off of the
cantilever to the baseline (see e.g. curves in figures 2(b) and
(c)). Generally, curves exhibiting a nonlinear trend in the
retraction stage are believed to be likely candidates to report a
specific interaction between the biomolecular partners. In this
case, the jump-off would correspond to the unbinding of the
complex and it allows extraction of the unbinding force (i.e.
the force required to separate the two partners upon the for-
mation of the complex). Accordingly, a reliable scrutiny of
the force curves unambiguously related to the unbinding of
the specific complex, constitutes a crucial step in the AFS
data analysis. With such an aim, the introduction of linker
molecules with well-characterized stretching features (such as
PEGs) to bind one or both of the biomolecules to the surfaces
(tip or substrate) represents a commonly used strategy to
single out force curves actually attributable to the unbinding
of a specific complex [20, 22]. As already mentioned, such a
procedure, although widely used and tested, requires quite
involved immobilization protocols with some reproducibility
concerns in comparative studies [23, 35].

Examples of AFS curves related to a tip functionalized
with β2μglobulin without and with the PEG linker, are shown
in figures 2(b) and (c), respectively. In both cases, the
retraction curves show a nonlinear trend indicative of the
stretching of the involved molecules (biomolecules, linkers
etc). However, only when the PEG is involved in the
unbinding process, the stretching is expected to exhibit well-
defined features which can be put into evidence by a suitable
polymer elongation analysis (see the methods section).

Here, we propose a new methodology to single out force
curves corresponding to specific biorecognition events.
Starting from the recent finding for which a peculiar 1/f noise
emerges from the cantilever noise power spectrum only when
a biorecognition process between the partners occurs [24], we
have searched for a quantitative correlation between the

Figure 3. Power spectra derived from 10 nm long regions of the
approaching stage located just before the contact point (left inset of
figure 2(c)) from AFS experiments carried out with: (a) bare tip; (b)
tip functionalized with β2μglobulin without PEG; and (c) tip
functionalized with β2μglobulin with PEG. Inset: power spectrum
derived from the 10 nm long region located at the beginning of the
approaching stage (right inset of figure 2). Continuous lines indicate
the best fit through the expression S(f) ∼1/f α, below (red) and above
(blue) the cutoff frequency of about 2 kHz; the reported α exponents
having been obtained by averaging over a hundred curves.
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occurrence of this 1/f noise in the approaching stage and the
expected linker stretching features in the retraction stage.

As shown in figure 2, fast fluctuations with an amplitude
of about 10−2 nN are clearly evident at zero cantilever
deflection; they becoming smaller beyond the contact point
because of a lower cantilever sensitivity under higher forces.
Generally, these fluctuations arise from thermal and electronic
noise with a contribution from the tip-substrate interactions
which become more significant as far as the tip and the
substrate become closer to each other [24, 36].

On such a basis, we have analyzed the spectral content of
10 nm long regions located at different parts of the
approaching stage for different setups. Figure 3 shows
representative power spectra from the regions of the
approaching stage just before the contact point where the two
partners are coming into contact (left inset in figure 2(c)). In
particular, figure 3(a) shows the power spectrum from the
bare tip, while the inset is related to the region at the begin-
ning of the approaching stage, where the partners are well
apart (right inset in figure 2(c)). Figures 3(b) and (c) show the
power spectra from a tip functionalized with β2-μglobulin
without and with the PEG linker, respectively; no significant
differences in the power spectra of these two systems having
been observed.

All the spectra exhibit two distinct linear regimes in the
analyzed frequency range. Above a cutoff frequency at about
2 kHz, a linear trend with a slope close to 2 (S(f) ∼1/f α, with α
close to 2, see fitting blue lines) is observed in all the spectra.
Generally, a 1/f 2 noise (red noise), reflects a constant corre-
lation function and can be put into relation to cantilever
oscillations as described from the Langevin equation taking
into account the electronic and thermal noise [36, 37]. The
cutoff frequency approximately corresponds to the char-
acteristic frequency of the cantilever, which has been esti-
mated by the dynamic method to be about 2.0–2.5 kHz [24].

At lower frequencies, the power spectrum displays a
plateau (i.e. S(f) ∼1/f α, with α around zero) for the bare tip
(see fitting red line in figure 3(a)); a similar trend having been
observed for the region located at the beginning of the
approaching stage (see the inset in figure 3(a)). Such a
behavior corresponds to white noise which arises from a δ-
correlation function. At variance, the power spectra for most
of the force curves characterized by a nonlinear trend in the
retraction stage exhibit a linear trend with a slope close to one
(S(f) ∼1/f α with α close to one) (see fitting red lines in
figures 3(b) and (c)). A 1/f regime, usually called flickering
(or pink) noise, derives from a slowly decreasing correlation
function, and is a fingerprint of a complex temporal behavior,
which occurs in systems characterized by multiple time scale
processes [38].

We were then prompted to use this α value to single out
force curves corresponding to a specific biorecognition event
between the partners. To support the validity of such a choice,
we have therefore analyzed the correlation between the 1/f
noise fingerprint in the power spectrum from the approaching
stage, and the PEG elongation features as emerging from a
fitting of the nonlinear trend in the retraction stage (carried
out as described in the methods).

Figure 4 shows the contour length, L, of the PEG plotted
as a function of the α exponent, for a collection of N force
curves recorded at a loading rate of 8 nN s−1. We found that
the α values close to one cluster in correspondence of PEG
contour length values in the 15–20 nm range. Additionally,
zero L values (i.e. force curves showing no peculiar PEG
stretching features) are observed in correspondence of α
values lower than 0.2.

We have then evaluated the correlation parameter C
between α and L by the expression: = ∑ =C l a

N N
i

i i
1 1 , where ai

has been set to 1 if α falls in the 0.8–1.1 interval and to zero
otherwise; while li has been set to 1 when the PEG stretching
criteria are satisfied and to zero otherwise. We found C = 0.88
for the curves at the loading rate of 8 n N s−1 and values
higher than 0.85 at the other loading rates; a straight line
corresponding to a correlation parameter equal to one having
been also plotted in figure 4. These results indicate that the
occurrence of 1/f α noise with an α exponent close to one in
the power spectrum from the approaching stage, is highly
correlated with the expected stretching features of the used
PEG upon pulling. Therefore, 1/f noise analysis constitutes a
reliable and fast method to single out force curves corre-
sponding to specific biorecogniton events.

We remark that a 1/f α trend with an α exponent close to 1
has been observed in many different processes occurring in
electronic devices, membrane channel conduction, protein
dynamics, economic processes, and so on [38–40]. Interest-
ingly, a 1/f noise has been recently observed in a field-effect
transistor for ultra-sensitive detection of a biomolecular
recognition [41]. Moreover, an analysis of thermal fluctua-
tions in biorecognition experiments, carried out by a bio-
membrane force probe, has allowed some authors to extract
direct information on the dissociation events of biomolecular
complexes [42].

In protein systems, 1/f noise was traced back to trapping/
escaping within local minima in the energy landscape gen-
erated by slightly different conformations, which are involved

Figure 4. Correlation plot between the α exponent and the contour
length of the PEG under stretching (see the text). Red points indicate
α values between 0.9 and 1.1 (flickering noise) while the blue points
indicate α values between 0.0–0.3 (white noise). The straight line
shows a correlation parameter, C, equal to one; the value of the
calculated correlation parameter being also reported.
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in the regulation of biological processes, such as catalysis,
exchange of ligands, folding and even high sensitivity bior-
ecognition [24, 43–46]. Starting from the hypothesis that
proteins explore local minima in the rough energy landscape
generated by slightly different conformations [47, 48], we can
assume that the biomolecular partners undergo a continuous
trapping and escape from these shallow minima, before
reaching their final binding state. Such a diffusive exploration
may result in characteristic fluctuations of the interaction
forces between the tip and the substrate which can then
modulate the cantilever noise spectral content.

The AFS curves have been then analyzed within the
theoretical context of the Bell–Evans model to extract kinetic
and energy landscape parameters at equilibrium [12, 13]. In
this framework, the most probable unbinding force, F*, is
expected to linearly increase with the natural logarithm of the
loading rate, R, as follows [13]:

* =
β

β⎛
⎝⎜

⎞
⎠⎟F

k T

x

Rx

k k T
ln , (4)B

off B

where koff is the equilibrium dissociation rate constant, xβ is
the width of the energy barrier along the direction of the
applied force, kB is Boltzmann’s constant and T the absolute
temperature; koff and xβ can be then extracted from the F*
versus R by a fit with equation (4).

The most probable unbinding force, at a given R, has
been evaluated from the maximum of the corresponding
histogram of the unbinding forces which are, in turn, deter-
mined from the jump-off in the retraction stage (see figure 2).
As an example, figure 5 shows a histogram of the unbinding
forces from the AFS curves recorded at a loading rate of
8 nN s−1.

We note a single mode distribution, slightly skewed
toward higher force values similarly to those observed for

other biomolecular complexes [8]. In the same figure, the
unbinding forces recorded after incubation with free anti-
β2μglobulin (30 mM), of the substrate functionalized with
β2μglobulin (called blocking control experiment) have been
also shown (see cyan columns). The marked reduction (61%)
of the unbinding frequency (defined as the ratio between the
number of the specific unbinding events and the total number
of collected force curves) and the similarity in the histogram
shape, witness the specificity of the interaction between
β2μglobulin and anti-β2μglobulin (see e.g. [49]).

Figure 6(a) shows the most probable unbinding force,
F*, plotted versus the logarithm of the effective loading rate
for three AFS experiments carried out using a PEG linker. In
all the cases, we note a linear trend in agreement with the
Bell–Evans model for a single energy barrier [13]. The values
of koff and xβ, as extracted from a fit by equation (4), show a
variability which is quite commonly observed in AFS
experiments on biomolecular complexes (figure 6(a)) [8, 11].
The average and the corresponding standard deviation of koff
and xβ over the three experiments (figure 6(a)) are in the range

Figure 5. Histograms of the unbinding forces for the β2μglobulin/
anti-β2μglobulin complex at the nominal loading rate of 8 nN s−1 for
the AFS experiments involving a 10 nm long PEG linker, before (red
columns) and after blocking (cyan columns), in which the substrate
functionalized with β2μglobulin has been incubated with free anti-
β2μglobulin. For each experiment, the data have been extracted from
a collection of a thousand of the force curves.

Figure 6. Plot of the most probable unbinding force, F*, as a
function of the logarithm of the loading rate for the three
independent AFS experiments: (a) with PEG linker and (b) without
PEG linker. The continuous lines are the fit by the Bell–Evans model
(equation (4)); the corresponding koff and xβ values extracted from
the fit being reported. For each system, the average value of koff and
xβ are also reported on the top of the figures.
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usually encountered for specific biomolecular complexes with
a rather high stability [8].

Remarkably, the averaged koff value is in good agreement
with that obtained by surface plasmon resonance measure-
ments (koff = (2.0 ± 0.2) × 10

−3 s−1)) from a setup in which
β2μglobulin has been flowed over a functionalized gold
substrate covered with anti-β2μglobulin [50].

Although the Bell–Evans model is widely used to analyze
the AFS data, other models have been recently developed to take
into consideration aspects neglected by the Bell–Evans model
[51–53]. In particular, the model of Friddle et al [53] takes into
account the possibility of rebinding during the barrier crossing.
To evaluate if and how rebinding could influence the kinetic
properties of the complex, we have analyzed the unbinding
forces versus the logarithm of the effective loading rate for the
AFS experiments carried out with the PEG linker in the
framework of this model. We found a linear trend for the fit
according to the experimental data. The extracted
koff = (2.5 ± 0.2) × 10

−3 s−1) and xβ= (0.53±0.04) nm) values are
in very good agreement with those found by the Bell–Evans
model. Therefore, at our loading rate values, the eventual pre-
sence of rebinding does not affect the kinetic properties of our
system.

Figure 6(b) shows the most probable unbinding force,
F*, plotted versus the logarithm of the effective loading rate
for three AFS experiments carried out without using the PEG
linker to bind β2μglobulin to the tip. In this case, the selection
of the unbinding force curves to be attributed to a specific
unbinding event have been done by searching for the 1/f noise
fingerprint in their power spectrum. For all three sets of data,
we found again a linear trend. The koff and xβ values,
extracted from a fit by the Bell–Evans model, exhibit some
variability, similarly to what was observed in the presence of
the PEG linker. However, the averaged koff and xβ values are
in good agreement with those obtained for AFS experiments
carried out with the PEG linker. Such an agreement, besides
confirming the reliability of the 1/f noise method to select
force curves from an AFS experiment, highlights the possi-
bility of carrying out reliable AFS experiments without the
use of additional linkers.

Conclusions

AFS constitutes an extremely powerful technique to investi-
gate biomolecular complexes at single molecule level,
allowing informative interaction properties to be extracted.
However, the effective applicability of AFS could be some-
what hampered by the necessity of a reliable selection of force
curves corresponding to biorecognition events. A widely used
strategy to address such a requirement consists in the use of
suitable polymer linkers with well-defined stretching features
under pulling. However, this approach is not exempt from
some drawbacks because of the quite involved surface
chemistry and of reproducibility issues in comparative stu-
dies. We have demonstrated here that a reliable and fast
selection of force curves, corresponding to specific bior-
ecognition events, can be performed by searching for the

characteristics 1/f noise in the power spectrum from the force
fluctuations during the approaching stage. The high correla-
tion between the occurrence of such a 1/f noise fingerprint and
the peculiar stretching features of the PEG linker, provides a
validation of the method for a specific complex. The cap-
ability of the proposed 1/f noise analysis to reliably select
forces in AFS experiments without using specific linkers, has
also been verified in complex partner immobilization without
the use of polymeric linkers. Collectively, these results indi-
cate that 1/f noise detection represents a powerful approach
which may extend the potentialities of the AFS technique to
study biological systems. If implemented in commercial
AFMs as a routine software facility, it would lead to an
increased efficiency, and to a limitation of the operator bias,
providing then a statistically robust, yet reliable ground for
more routine applications in biological and clinical assays.
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